SOLUTION 1

(a) Price Function Pr Pr a + bx=For Pr =3.8, x= 10200 4.7, x = 8400Pr = We have a + 10200 b -3.8 = 4.7 = a + 8400 b 2 1 Equation = -1800b0.9 b = -0.0005(1) value of b Subst. into = a + 10200 (-0.0005)3.8 3.8 = a - 5.1= 8.9 а

Hence the Demand Function is Pr(x) = 8.9 - 0.0005x

(b) Revenue function is given by

 $\begin{array}{rcl} R (x) &=& x \, . \, Pr \, (x) \\ &=& x \, (8.9 - 0.0005 x) \\ R (x) &=& 8.9 \, \varkappa - 0.0005 x^2 \\ TC (x) &=& 1500 + 1.8 \, x - cost \, function \\ Hence \, profit \, function \, PR(x) \end{array}$

PR(x) = R(x) - TC(x)= 8.9 \varkappa - 0.0005 x² - (1500 + 1.8 x) PR(x) = -0.0005x2 + 7.1x - 1500

(c) For the Maximum Profit $\frac{dPR}{dx} = 0$ $\frac{dPR}{dx} = -0.001x + 7.1$ = -0.001 x + 7.1 = 0 0.001x = 7.1 x = 7100 when x = 7100maximum profit is: PR (7100) = - 0.0005 (7100) + 7.1 (7100) - 1500 = - 3.55 + 50410 - 1500 = 48906.15

(d) Price Pr is Pr (7100) = 8.9 - 0.0005 (7100) = 5.35

SOLUTION 2

- (a) (i) Positive correlation
 - (ii) Negative correlation
 - (iii) Negative correlation
 - (iv) Positive correlation
 - (v) Negative correlation
 - (vi) Positive correlation
 - (vii) Positive correlation
- (b) (ii) & (iii)

Х	Y	XY	X^2	Y^2	Rx	Rxy	Ry-Rx	$(Rx-Ry)^2$
15	250	3,750	225	62500	1	3	2	4
23	1630	37,490	529	2,656,900	2	8	6	36
26	970	25,220	676	940,900	3	7	4	16
28	2190	61,320	784	4,796,100	4	9	5	25
31	410	12,710	961	688,900	5	4	-1	1
35	830	29,050	1225	168,100	6	6	0	0
37	0	0	1369	0	7	1.5	-5.5	30.28
38	550	20,900	1444	302,500	8	5	-3	9
42	0	0	1764	0	9	1.5	-7.5	56.25

$$\Sigma x = 275; \quad \Sigma Y = 6830; \quad \Sigma xy = 190440; \quad \Sigma x^2 = 8977; \quad \Sigma y^2 = 8,675,000; \quad \Sigma (Rx - Ry)^2 = 177.5$$

$$r = \frac{n\Sigma xy - \Sigma x\Sigma y}{[n\Sigma^2 - (\Sigma x)^2] [b\Sigma y^2 - (\Sigma y)2]}$$

= $\frac{9 x 190440 - 275 x 6830}{[9 x 8977 - (275)^2] [9 x 8,675,000 - (6830)^2]}$

$$= \frac{-164290}{5168 \times 31,426,100}$$

$$= \frac{-164290}{162410084800}$$

$$= -0.000001 \qquad \text{weak negative correlation}$$
(iii) R = 1 - 6 (Σ d2 + t3 - t)

$$= \frac{12}{n(n2-1)}$$

$$= 1 - 6 (177.5 + 2^3 - 2)$$

$$\frac{12}{9(9^2 - 1)}$$

= 1 - 1.48333
= - 0.483333 weak positive correlation

SOLUTION 3

(a) (i) <u>Critical Path</u>

It one path through the network with EST's and LST's identical. It is the chain of activities which has the longest duration.

(ii) <u>Critical Activity</u>

It is an activity which has EST = LST of tail event, and EST = LST of the head event and the EST of the head event minus the EST of the tail event equal the activity duration.

(iii) <u>Project Duration</u>

It is amount of time it takes to complete all activities in a project.

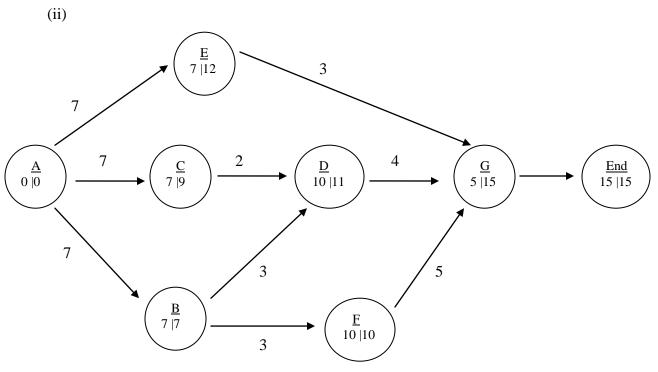
(iv) <u>Activity Duration</u>

It is amount of time needed to complete an activity of a project.

(v) <u>Total Float</u>

This is the amount of time a path of activities could be delayed without affecting the overall project duration.

(b)	(i)	A - F - G	10 days
		A - C - D - G	13 days
		A - B - E G	15 days
		A - B - D G	14 days



Project duration = 15 days

Critical path is A -B -E -G

(iii)				
Activity	Duration	EST	LST	Total Float
				(LST - Duration - EST)
AB	7	0	7	0
AC	7	0	9	2
AF	7	0	12	5
BD	3	7	11	1
BE	3	7	10	0
EG	5	10	15	0
FG	3	7	15	5
CD	2	7	11	2
DG	4	10	15	1

⁽iv) If activity DG takes 8 days, rather than 4 days, the project will delay for 3 days i.e from 15 days to 18 days.

SOLUTION 4

(a) FV = GHC800,000 i = 0.066 = 0.005512

n =
$$12 \times 5 = 60$$

(i) PMT = FV
$$. \frac{i}{(1+i)^n - 1}$$

$$= 800,000 \times \frac{0.0055}{(1.0055)^{60} - 1}$$

= GHC11,290.42 per month

(ii)
$$FV = PMT x \frac{(1+i)^n - 1}{I}$$

For the Interest earned during the 5th year with PMT = GHC11,290.42 i = 0.0055 and n = $12 \times 4 = 48$

$$FV = 11,290.42 \text{ x } (1.0055)^{48} - 1 \\ 0.0055$$

= GHC618,277.04 The amount after 4 years.

During the 5^{th} year the amount in the account grew from GHC618,277.04 to GHC800,000.

A portion of this growth was due to the 12 monthly payments of GHC11,292.42. The remainder of the growth was interest.

Thus:

800,000 - 318,277.04 = 181,722.96 Growth in the 5th year.

 $12 \times 11,290.42 = 135,485.04$ payment during the 5th year.

181,722.96 - 135,485.04 = GHC46,237.92 Interest during the 5th year

(b) PMT = GHC2,000 I = 0.685 n = 1.0 FV = PMT $\frac{(1+i)^n - 1}{i}$ = 2,000 x $\frac{(1.0685)^{10} - 1}{0.0685}$ = GHC27,437.89 The amount in the account when Mr. Asempa retires will be:

Using the compound interest formula with P = 27,437.89 I = 0.0685 and n = 25

 $A = P(1+1)^n$

 $= 27,437.89 (1.0685)^{25}$

A = GHC143,785.10

Mr. Asempa retires with GHC143,785.10 in his account.

SOLUTION 5

(a) (i) Decision Tree

(ii) Node 1:	Expected value at random node = 0.6 x 12,000 + 0.4 x 4,000 = 8,800
Node 2:	Expected value of random node = $0.6 \times 18,000 + 0.4 \times 6,000 = 13,200$
Node 3:	Best alternative at decision node = maximum of 8,800 and 8,000 = 8,800
Node 4:	Best alternative at decision node = maximum of 13,200 and 12,000 = 13,200
Node 5:	Expected value at random node = $0.1 \times 4,000 + 0.7 \times 8,000 + 0.2 \times 13,200 = 9,200$
Node 6:	Expected value at random node = 0.4 x 7,000 + 0.6 x 10,000 = 8,800
Node 7:	Best alternative at decision node = maximum of 7,800 and 8,000 = 8,000
	Best alternative at decision node = maximum of 9,200, 8,000 and 8,000 = 9,200

(iii)

The best decision are to buy the Basicor machine and if it produces more than 2,000 units, to export all production. The expected profit from this policy I GHC9,200 a week.

(a) We write the demand as a (3×2) matrix D and the selling price as a (2×3) matrix P

Then

$$D = \begin{pmatrix} 10 & 80 \\ 40 & 30 \\ 20 & 60 \end{pmatrix} \qquad P = \begin{pmatrix} 4 & 6 & 8 \\ 12 & 16 & 20 \end{pmatrix}$$

(i) Income from each company is given by

$$DP = \begin{pmatrix} 10 & 80 \\ 40 & 30 \\ 20 & 60 \end{pmatrix} \begin{pmatrix} 4 & 6 & 8 \\ 12 & 16 & 20 \end{pmatrix}$$

$$= \begin{pmatrix} 10 & x \ 4 + \ 180 & x \ 12 & 10 & x \ 6 + \ 80 & x \ 16 & 10 & x \ 8 + \ 80 & x \ 20 \\ 40 & x \ 4 + \ 30 & x \ 12 & 40 & x \ 6 + \ 30 & x \ 16 & 40 & x \ 8 + \ 30 & x \ 20 \\ 20 & x \ 4 + \ 60 & x \ 12 & 20 & x \ 6 + \ 60 & x \ 16 & 20 & x \ 8 + \ 60 & x \ 20 \end{pmatrix}$$
$$= \begin{pmatrix} 1,000 & 1,340 & 1,680 \\ 520 & 720 & 920 \\ 800 & 1,080 & 1,360 \end{pmatrix}$$

(ii) The amount each company spent is given by

$ \begin{pmatrix} 1,000 & 1,340 & 1,680 \\ 520 & 720 & 920 \\ \end{bmatrix} x \begin{bmatrix} 1 \\ 1 \\ 1 \\ \end{bmatrix} = \begin{pmatrix} 4,020 \\ 2,160 \\ \end{bmatrix} $	C		~					
520 720 920 x 1 = 2,160	1,000	1,340	1,680		$\begin{bmatrix} 1 \end{bmatrix}$		(4,020)	
	520	720	920	х	1	=	2,160	
	080	1,080	1,360)	1		3,240	J

Hence Drobo spent GHC4,020, Keto spent 2,160 and Zuu spent GHC3,240.

(iii) The total expenditure or income of Ntamapa is given by

$$\begin{pmatrix} 1 & 1 & 1 \\ & & & 1 \end{pmatrix} \begin{pmatrix} 4,020 \\ 2,160 \\ 3,240 \end{pmatrix}$$
$$= GHC9,420.00$$

SOLUTION 6

(i)

$$\begin{array}{ccc}
D & R \\
D & 0.7 & 0.4 \\
R & 0.3 & 0.6
\end{array}$$

D

(ii)
$$A^{2} = \begin{pmatrix} 0.7 & 0.4 \\ 0.3 & 0.6 \end{pmatrix} \begin{pmatrix} 0.7 & 0.4 \\ 0.3 & 0.6 \end{pmatrix} = \begin{pmatrix} 0.61 & 0.52 \\ 0.39 & 0.48 \end{pmatrix}$$

 $A^{3} = A2A = \begin{pmatrix} 0.61 & 0.52 \\ 0.39 & 0.48 \end{pmatrix} \begin{pmatrix} 0.7 & 0.4 \\ 0.3 & 0.6 \end{pmatrix} = \begin{pmatrix} 0.583 & 0.556 \\ 0.417 & 0.444 \end{pmatrix}$

_

(iii) If the current MPs are males then the initial distribution becomes 1

After three elections we have

$$\begin{pmatrix} 0.7 & 0.4 \\ 0.3 & 0.6 \end{pmatrix}^3 \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0.583 & 0.556 \\ 0.417 & 0.444 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0.853 \\ 0.417 \end{pmatrix}$$

Therefore 858.3% of the MPs will be males.

SOLUTION 7

Number of class interval, k =
$$1 + 3.3 \log N$$

= $1 + 3.3 \log 30$
= $5.87 = 6$

Class width,
$$C = \frac{Range}{k} = \frac{14.3 - 5.2}{6} = 1.52 = 1.5$$

Class Boundaries	Tally	Freq.	Midpoint (2)	fx	fx^2
5.15 - 6.65	1	1	5.9	5.9	34.81
6.65 - 8.15	HH	5	7.4	37.0	273.80
8.15 - 9.65	++++ ++++	9	8.9	80.1	912.89
9.65 - 11.15	++++ ++++	10	10.4	104.0	1,081.60
11.15 - 13.15		4	11.9	47.6	566.44
13.65 - 15.45		1	13.4	13.4	179.56
		30		288.0	2,849.80

(i) Mean:
$$\frac{\Sigma fx}{\Sigma f} = \frac{288}{30} = 9.6$$

std dev =
$$\sqrt{\frac{1}{n-1}} \left(\frac{\Sigma f x^2 - 1}{n} \left(\frac{\Sigma f x}{n} \right)^2 \right)$$

$$= \sqrt{\frac{1}{29}} \left(\begin{array}{c} 2849.10 - \frac{1}{30} & (288)^2 \\ 30 \end{array} \right)$$

 $\left(\begin{array}{c} 0 \end{array}\right)$

Coefficient of variation = Standard Deviation

$$= \frac{1.70496}{96} = 0.1776$$
(ii) Median position = $\left(\frac{30}{2}\right)^{\text{th}} = 15^{\text{th}}$
Median class -= 8.15 = 9 - 65

$$M = 1m \left(\frac{n/2 - fem}{fm}\right) \text{ cm} = 8.15 + \left(\frac{15 - 6}{9}\right) 1.5$$

$$= 9.65$$
(iii) Skewness = $\frac{3 (\text{mean} - \text{median})}{\text{standard deviation}} = \frac{3 (9.6 - 9.65)}{1.7096} = -0.0877$
Kurtosis = $\frac{1/2}{(203 - Q1)}$
Q3 = $9.65 + \left(\frac{30(34) - 15}{10}\right) 1.5 = 10.775$
Q1 = $6.65 + \left(\frac{10(14) - 1}{5}\right) 1.5 = 8.6$
P₉₀ = $11.15 + \left(\frac{30(0.9) - 25}{4}\right) 1.5 = 11.9$
P₁₀ = $6.65 + \left(\frac{30(0.1) - 1}{5}\right) 1.5 = 7.25$
Kurtosis = $\frac{1/2(10.775 - 8.6)}{11.9 - 7.25} = 0.234$