SOLUTION 1

(a)	(i)	Production	mix	where	material is	limited	to 59	6 000kgs
(a)	(1)	<u>I Iouucuon</u>	шпл	where	material 15	minicu	10 57	<u>J,000Kg3</u>

Produce 40,000 dishes of F using 320,000 kgs Produce 27,600 dishes of J using <u>276,000</u> kgs <u>596,000</u> kgs

(ii) Production mix where labour is limited to 480,000 hours

Produce 40,000 of J using 320,000 hours Produce 26,667 of C using <u>160,000</u> hours <u>480,000</u> hours

Calculation of contribution/unit

Dishes Selling price Less: Marginal cost	J 420	F 360	C 300	P 240				
Material	(100)	(80)	(100)	(120)				
Labour	<u>(40)</u>	<u>(50)</u>	<u>(30)</u>	(20)				
Contribution	<u>280</u>	<u>230</u>	<u>170</u>	<u>100</u>				
Material as a limiting factor								
Contribution/kg	<u>280</u>	<u>230</u>	<u>170</u>	<u>100</u>				
_	10	8	10	12				
:	= 28 =	= 28.75 =	17 =	8.3				
Ranking	2 nd	1 st	3 rd	4 th				
Labour as a limiting factor								
Contribution/hour	<u>280</u>	<u>230</u>	<u>170</u>	100				
	8	10	6	4				
	= 35	= 23	= 28.33	= 25				
Ranking	1 st	4 th	2^{nd}	3 rd				

SOLUTION 2

Workings

- 1. Sales at 80% capacity = GH¢6,400,000 at 100% = 6,400,000 x 100/80 = GH¢8,000,000
- 2. Sales (export) at 50% capacity = ½ x 8, 000, 000 = 4,000,000 = 4,000,000 x (100-15)% = <u>GH¢3,400,000</u>
- 3. Direct material cost for option 2 (100% capacity) : $GHc2,000,000 \times \frac{100}{80} = \frac{GHc2,500,000}{80}$
- 4. Direct material cost for option 3 (130% capacity) : 2,000,000 x $\frac{130}{80} = \frac{GHc3,250,000}{80}$
- 5. Direct labour cost for option 2 (100% capacity) : $800,000 \ge \frac{100}{80} = \text{GHc}\underline{1,000,000}$
- 6. Variable old for option 2 (100% capacity) : $400,000 \times \frac{100}{80} = \frac{GHc500,000}{80}$
- 7. Variable old for option 3 (130% capacity) : $400,000 \text{ x } \frac{130}{80} = \frac{\text{GH}c650,000}{80}$

PROFIT STATEMENT

	<u>OPTION (GH¢)</u>	
<u>1</u>	<u>2</u>	<u>3</u>
Sales (Local) 6,400	4,000,000	6,400,000
Sales (Export)	<u>3,400,000</u>	3,400,000
Total sales $\underline{6,400}$	<u>7,400,000</u>	9,800,000
Direct material 2,000	2,500,000	3,250,000
Direct labour 80	0,000 1,000,000	1,300,000
Variable olds 40	0,000 500,000	650,000
<u>3,200</u>	<u>4,000,000</u>	5,200,000
Contribution 3,200) ,000 3 ,400,000	4,600,000
Less fixed olds 2,600	<u>2,600,000</u>	2,800,000
Profit <u>600,0</u>	<u>800,000</u>	<u>1,800,000</u>

Conclusion:

Option 3 is the best because it results in the highest profit.

SOLUTION 3

Relevant Cost Estimat	<u>e</u>
	<u>GH¢</u>
Direct materials and components:	
4000 units of Alfa at GH¢20 per unit (1)	80,000
400 units of Beta at GH¢20 per unit (2)	8,000
Other material components	25,000
	113,000
Direct labour (3)	-
Overhead:	
Dept A (250 hours at GH¢30) (4)	7,500
Dept B (450 hours at GH¢8) (5)	<u>3,600</u>
	<u>124,100</u>

1. It is assumed that using material Alfa on the contract will result in the materials being replaced. Therefore additional opportunity costs to the company will be the replacement costs of the material.

The alternative uses of the materials are to sell them or to use them as substitute materials. The savings are greater when the materials are used as a substitute. Therefore the company will be worse off by GH¢20 per unit of materials use on the contract. Hence the opportunity cost of Beta is GH¢20 per unit.

- 2. The company appears to have a temporary excess supply of the labour. The total labour cost will be the same whether or not the contract is undertaken. Therefore the opportunity cost is zero.
- 3. The company will incur GH¢3600 additional costs if the contract is undertaken.

Acceptance of the contract will result in the department losing the opportunity of charging out 250 hours at GH¢30 per hour.

Relevant Costs

Relevant costs for decision making are those costs which will be affected by the decision

- They are future costs
- They are cash flows
- They differ between various alternatives
- Past and sunk costs are irrelevant

Examples are incremental costs, opportunity cost etc.

SOLUTION 4

|--|

	<u>GH¢</u>
Direct materials (8kg @ GH¢1.5)	12.00
Direct wages (4 @ 2 hours)	8.00
Variable overhead (2 hours @ GH¢1)	2.00
	22.00

Workings

(w1) Actual quantity of materials purchased at Standard price = actual cost + favourable material price variance = GH¢420,000 + GH¢30,000 = GH¢450,000 Therefore, standard material price = $\frac{450,000}{300,000}$ = GH¢1.5

(w2) Material usage variance = $\underline{GH18,000} = \underline{12,000kg}$ GH¢1.5

Therefore standard quantity for actual production = 300,000 - 12,000kg = 288,000kg

Therefore standard quantity per unit = $288,000 \div 3600 = \underline{8kg}$

(w3) Actual hours worked at standard rate = 272,000 - 16000 = GHc256,000

Therefore standard rate per hour = $\underline{GHc256,000}$ 64,000 hours = GHc4

(w4) Labour efficiencies variance = $GHc32,000 \div 4$ = 8,000 hours

Therefore standard hours for actual production = $64,000 + 8,000 = \underline{72,000 \text{ hours}}$

Standard hour per unit = $72,000 - 36,000 = \underline{2hours}$

- (w5) Actual hours worked at the standard variable Overhead rate = (actual variable overheads – favourable expense variance) = 76,000 - 12,000 = 64,000Therefore standard variable overhead rate: $= 64,000 \div 64,000$ hours = GH¢1.00
 - (b) Possible Causes:

(i) Material usage variances:

- Careless handling of materials by production staff
- The purchase of inferior material
- Pilferage
- Changes in quality control requirement
- Changes in methods of production

(ii) Material price variances:

- Actual prices may exceed standard prices because of a change in market conditions that causes a general price increase.
- Adverse variance may reflect a failure by the purchasing department to seek the most advantageous sources of supply.
- Favourable price variance might be due to the purchase of inferior quality materials.

(iii) Wage rate variance:

- Negotiated increase in wage rates not yet having been reflected in the standard wage rate.
- Where a standard is used that represents a single average rate for a given operation performed by workers who are paid at several different rates.

(iv) Labour efficiency variance:

- Inferior quality materials
- Different grades of labour
- Failure to maintain machinery in proper condition
- The introduction of new equipment or tools
- Changes in the production processes.

SOLUTION 5

(a) (i) Sales quantity and value budget

Product:	<u>SI</u>	MI	LAR	Total
Sales quantities Selling prices Sales value	1200 GH¢80 <u>GH¢96,000</u>	2400 GH¢96 <u>GH¢230,400</u>	1800 GH¢112 <u>GH¢201,600</u>	<u>GH¢528,000</u>
(ii) <u>Production</u>	on Quantities Bud	<u>dget</u>		
Product:	<u>SI</u>		MI	LAR
Sales quantities Add closing stoc	120 k <u>132</u> 252	00 2 <u>0</u> 20	2400 <u>1980</u> 4380	1800 <u>660</u> 2460
Less: opening sto Units to be produ	ock $\frac{120}{132}$	<u>00</u> 20	<u>1800</u> 2580	<u>600</u> 1860

(iii) <u>Material Usage Budget (quantities)</u>

Production q	uantities		Material	ls		
		MA	<u>1</u>	<u>MB</u>	<u>MB</u>	
	Unit per	<u>Total</u>	Unit per	<u>Total</u>	Unit per	<u>Total</u>
	product		product		product	
SI 1320	5	6,600	3	3,960	1	1,320
MI 2580	4	10,320	4	10,320	3	7,740
LAR 1860	3	5,580	2	<u>3,720</u>	2	<u>3,720</u>
Usage in qua	ntities	22,500		<u>18,000</u>		<u>12,780</u>

(iv) <u>Material Purchases Budget (quantities and value)</u>

	MA	<u>MB</u>	<u>MC</u>	<u>Total</u>
.	22 500	10.000	10 500	GHÇ
Material usage	22,500	18,000	12,780	
Add closing stock	<u>37,440</u>	28,500	<u>17,280</u>	
	59,940	46,800	30,060	
Less: opening stock	<u>31,200</u>	24,000	14,400	
Purchase in quantities	28,740	22,500	15,660	
Price per unit	GH¢3	GH¢5	GH¢8	
	<u>GH¢86,220</u>	<u>GH¢114,000</u>	<u>GH¢125,280</u>	<u>325,500</u>

(b) The principal budget factor is also known as the limiting factor or key factor. It is defined as the factor which at a particular time, or over a period, will limit the activities of an undertaking. The limiting factor is usually the level of demand for the products or services of the undertaking but it could be a shortage of one of the productive resources. Example, skilled labour, customer base, level of ICT, high interest rate, reserve ratios.